Указания к выполнению контрольной работы № 2

Пример решения задачи № 5

Для плоского четырехзвенного механизма (рис. 2.18) требуется выполнить кинематический расчет.

Дано:

$$n_{OA} = 250$$
 об/мин; $l_{OA} = 0,1$ м; $l_{AB} = l_{BE} = 0,25$ м; $l_{BC} = l_b = 0,2$ м; $l_a = 0,3$ м; $\angle ABC = 90^\circ$; $M_{BH} = 500$ Нм; $\alpha = 90^\circ$.

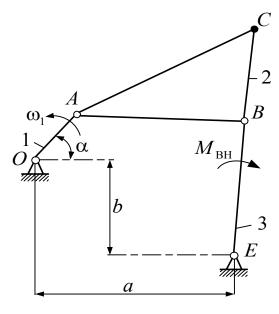


Рис. 2.18

Построение плана положений

Зададим масштабный коэффициент длины:

$$\mu_l = \frac{l_{OA}}{OA} = \frac{0.1}{25} = 0.004 \text{ m/mm},$$

где OA = 50 мм — масштабная длина звена 1.

Масштабные значения длин других звеньев и координат для определения положений стоек получим, поделив действительную величину на масштабный коэффициент μ_I . Полученные значения сведем в табл. 2.2.

Таблица 2.2

Значение	AB = BE	BC = b	a
Масштабная ве-	62.5	50	75
личина, мм	02,3	30	7.5

Изображаем положения стоек, а именно точек O, E, по заданным координатам a и b, строим положение механизма, соответствующее положению ведущего звена 1, заданного углом 90° (рис 2.19, a). Положения точки B опре-

деляем методом геометрических мест (методом засечек). Для этого проведем дугу радиусом AB с центром в точке A и дугу радиусом BE с центром в точке E, пересечение этих дуг определит положение точки B. Затем строим треугольник ABC по исходным данным.

Определение скоростей

По заданной частоте вращения $n_{O\!A}$ кривошипа определяем угловую скорость этого звена Θ_1 :

$$\omega_1 = \frac{\pi n_{OA}}{30} = \frac{3,14 \cdot 250}{30} = 26,17 \text{ c}^{-1}.$$

Скорость точки A

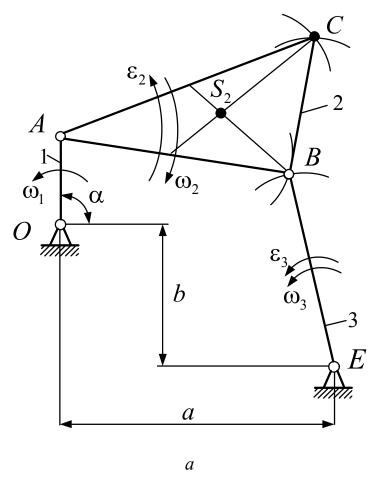
$$V_A = \omega_1 l_{OA} = 26,17 \cdot 0,1 = 2,62$$
 m/c.

Выбираем масштабный коэффициент для построения плана скоростей:

$$\mu_V = \frac{V_A}{pa} = \frac{2,62}{52,4} = 0,05 \text{ m/c} \cdot \text{mm},$$

где pa- длина вектора, изображающего вектор скорости \overline{V}_A на плане скоростей, длину его выбираем таким образом, чтобы масштабный коэффициент был стандартным.

Π лан положений механизма $\mu_l = 0{,}004~\mathrm{M/MM}$



План скоростей $\mu_V = 0.05 \,\, \text{m/c} \cdot \text{мм}$

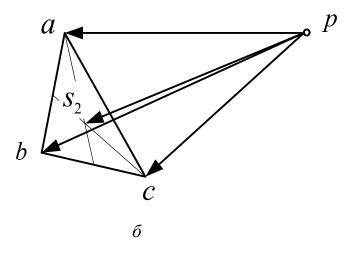


Рис. 2.19

Откладываем вектор $p\overline{a}$ из точки p (полюс плана скоростей) длиной 52,4 мм перпендикулярно OA в сторону вращения кривошипа (рис. 2.19, δ). Для определения скорости точки B составим систему векторных уравнений:

$$\begin{cases} \overline{V}_B = \overline{V}_A + \overline{V}_{BA} \\ \overline{V}_B = \overline{V}_E + \overline{V}_{BE} \end{cases}.$$

Для графического решения этой системы через точку a проведем линию перпендикулярно AB (направление скорости \overline{V}_{BA}), а из полюса p проведем линию перпендикулярно EB (направление скорости $\overline{V}_{BE} = \overline{V}_B$, так как $\overline{V}_F = 0$).

На пересечении этих линий получим точку b, конец вектора скорости точки B, изображенной в масштабе μ_V , тогда

$$V_B = pb \cdot \mu_V = 56,5 \cdot 0,05 = 2,825 \text{ m/c}.$$

По теореме подобия определяем скорость точки C_2 (принадлежит звену 2), для этого строим треугольник Δabc на плане скоростей, подобный треугольнику ΔABC на плане механизма. Так как треугольник Δabc повернут на 90° относительно ΔABC , то проводим линию перпендикулярно AC из точки a, а из точки b — линию перпендикулярно BC. На пересечении этих линий получаем точку c.

Скорость точки S_2 (центра тяжести звена 2) также определяем по теореме подобия. Эта точка находится на пересечении медиан, такое положение она займет и в Δabc на плане скоростей. Соединив точку S_2 с полюсом p, получаем вектор ps_2 . Значения искомых скоростей точек C и S_2 определяем следующим образом:

$$V_C = pc \cdot \mu_V = 47 \cdot 0.05 = 2.35 \text{ m/c};$$

$$V_{S2} = ps_2 \cdot \mu_V = 50 \cdot 0.05 = 2.5 \text{ m/c}.$$

Определим угловые скорости $\,\omega_{\,_{2}}$, $\,\omega_{\,_{3}}$:

$$\omega_2 = V_{BA} / l_{AB} = ab \cdot \mu_V / l_{AB} = 14 \cdot 0.05 / 0.25 = 2.7 \text{ c}^{-1};$$

$$\omega_3 = V_B / l_{BE} = 2.825 / 0.25 = 2.7 \text{ c}^{-1}.$$

Угловая скорость ω_2 направлена в ту же сторону, что и вектор \overline{V}_{BA} , если приложить его к точке B. Направление вектора \overline{V}_{BA} определяем по правилу сложения векторов (направлен от точки a к точке b).Таким образом, угловая скорость ω_2 направлена по часовой стрелке; указываем на плане положений круговой стрелкой.

Угловая скорость ω_3 направлена в ту же сторону, что и скорость \overline{V}_B , а значит, ω_3 направлена против часовой стрелки. Укажем это направление на плане положений.

Определение ускорений

Ускорение точки A определяем по формуле

$$a_A = \omega_1^2 \cdot l_{QA} = 26,17^2 \cdot 0,1 = 68,49 \text{ m/c}^2$$
.

Выбираем масштабный коэффициент для построения плана ускорений, для этого принимаем отрезок $\pi a = 137$ мм, который соответствует ускорению \overline{a}_A в масштабе. Вектор πa отложим параллельно OA в направлении к точке O (рис. 2.20). Масштабный коэффициент μ_a определяется следующим образом:

$$\mu_a = \frac{a_A}{\pi a} = \frac{68,49}{137} = 0,5 \text{ m/c}^2 \cdot \text{mm}.$$

Ускорение точки B определяем на основании двух векторных уравнений движения этой точки относительно точек A и E:

$$\begin{cases} \overline{a}_B = \overline{a}_A + \overline{a}_{BA}^n + \overline{a}_{BA}^{\tau} \\ \\ a_B = a_E + \overline{a}_{BE}^n + a_{BE}^{\tau}, \end{cases}$$

где
$$a_{BA}^n = \omega_2^2 \cdot l_{AB} = 2,7^2 \cdot 0,25 = 1,82 \text{ м/c}^2$$
,

$$\overline{a}_E = 0$$
,

$$a_{RE}^n = \omega_3^2 \cdot l_{RE} = 11.3^2 \cdot 0.25 = 31.92 \text{ m/c}^2$$
.

Для того чтобы эти ускорения отложить на плане ускорений, определяем соответствующие им длины отрезков:

$$an_2 = \frac{a_{BA}^n}{\mu_a} = \frac{1,82}{0,5} = 3,6 \text{ MM},$$

$$\pi n_3 = \frac{a_{BE}^n}{\mu_a} = \frac{31,92}{0,5} = 63,8 \text{ MM}.$$

План ускорений

 $\mu_a = 0.5 \text{ m/c}^2 \cdot \text{mm}$

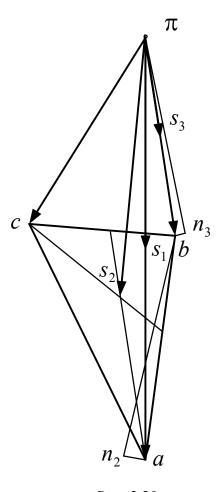


Рис. 2.20

Отрезок an_2 отложим из точки a параллельно звену AB в направлении к точке A, а отрезок πn_3 — из полюса π в направлении к точке E параллельно звену BE. Через точку n_2 проведем линию перпендикулярно звену AB (направление ускорения \overline{a}_{BA}^{τ}), а через точку n_3 — линию перпендикулярно BE (направление ускорения \overline{a}_{BE}^{τ}). Пересечение этих линий дает точку b; соединив ее с полюсом π , получим вектор $\overline{\pi b}$, изображающий ускорение \overline{a}_B . Его абсолютное значение найдем по формуле

$$a_B = \pi b \cdot \mu_a = 65 \cdot 0,5 = 32,5 \text{ m/c}^2$$
.

Ускорение точки C треугольного звена ABC найдем, используя теорему подобия, т. е. строим Δabc , подобный ΔABC . Для этого составим соотношения:

$$k = \frac{ab}{AB} = \frac{bc}{BC} = \frac{ac}{AC} = \frac{74}{0.25} = 296 \text{ MM/M},$$

где ab = 74 мм.

Тогда

$$bc = k \cdot BC = 296 \cdot 0.2 = 59.2 \text{ MM},$$

$$ac = k \cdot AC = 296 \cdot 0.32 = 94.7 \text{ MM}.$$

Методом засечек определяем положение точки c, при этом обход букв по контуру в выбранном направлении на плане ускорений ($a \to b \to c$, против часовой стрелки) должен соответствовать обходу букв на плане положений ($A \to B \to C$, также против часовой стрелки).

Соединим точку c с полюсом π и определим ускорение:

$$a_C = \pi c_2 \cdot \mu_a = 85 \cdot 0.5 = 42.5 \text{ m/c}^2$$
.

Ускорения центров тяжести звеньев 1, 2 и 3 определим по теореме подобия:

$$a_{S1} = 0.5a_A = 0.5 \cdot 68.49 = 34.25 \text{ m/c}^2;$$

$$a_{S2} = \pi s_2 \cdot \mu_a = 85 \cdot 0.5 = 42.5 \text{ m/c}^2;$$

$$a_{S3} = 0.5 a_B = 0.5 \cdot 32.5 = 16.25 \text{ m/c}^2.$$

Определим угловые ускорения звеньев:

$$\varepsilon_2 = \frac{a_{BA}^{\tau}}{l_{AB}} = \frac{n_2 b \cdot \mu_a}{l_{AB}} = \frac{74 \cdot 0.5}{0.25} = 148 \text{ c}^{-2},$$

$$\varepsilon_3 = \frac{a_{BE}^{\tau}}{l_{BE}} = \frac{n_3 b \cdot \mu_a}{l_{BE}} = \frac{0.8 \cdot 0.5}{0.25} = 1.6 \text{ c}^{-2}.$$

Угловые ускорения направлены в ту сторону, куда направлены соответствующие касательные ускорения. Ускорение $\overline{a}_{{\scriptscriptstyle B}{\scriptscriptstyle A}}^{\, au}$ направлено от точки n_2 к b (определяем по правилу сложения векторов), прикладываем мысленно это ускорение к точке B, получаем направление против часовой стрелки. Анало-

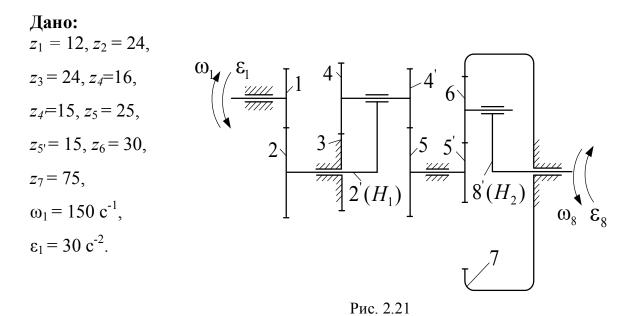
гично определяем для звена 3, ускорение \overline{a}_{BE}^{τ} (вектор $\overline{n_3b}$) прикладываем к точке B, получаем направление ε_3 против часовой стрелки.

Пример решения задачи № 6

Схема механизма

Для схемы зубчатой передачи, приведенной на рис. 2.21, требуется определить:

- 1) передаточное отношение между входным и выходным звеньями и его знак (если их оси вращения параллельны);
- 2) угловую скорость и угловое ускорение выходного звена, их направления показать на схеме передачи;
- 3) время, в течение которого угловая скорость увеличится в два раза (если движения ускоренное) или уменьшится до нуля (если движение замедленное), число оборотов входного и выходного звеньев за это время;
 - 4) общий коэффициент полезного действия передачи.



Решение. Определим передаточное отношение. Данная зубчатая передача состоит из рядовой передачи, образованной зубчатыми колесами 1 и 2, и двух планетарных передач. Первая планетарная передача двухрядная, состоит из центральных колес 3, 5 (колесо 3 неподвижно), сателлитов 4, 4' и водила $2'(H_1)$. Вторая планетарная передача — однорядная, состоит из центральных колес 5', 7 (колесо 7 неподвижно), сателлита 6 и водила $8(H_2)$. Исходя из этого, общее передаточное представим в виде произведения передаточных отношений этих трех передач:

$$u_{18} = u_{12} \cdot u_{H_15}^{(3)} \cdot u_{5'H_2}^{(7)}, \qquad (2.34)$$

где u_{12} – передаточное отношение рядовой передачи;

 $u_{H_15}^{(3)}$ — передаточное отношение первой планетарной передачи (от водила H_1 к колесу 5);

 $u_{5'H_2}^{(7)}$ — передаточное отношение второй планетарной передачи (от колеса 5' к водилу H_2).

Определим u_{12} :

$$u_{12} = -\frac{z_2}{z_1} = -\frac{24}{12} = -2. {(2.35)}$$

Для определения передаточных отношений планетарных передач используем формулу Виллиса; при этом учтем то, каким звеном является водило — ведущим или ведомым. В первой планетарной передаче водило — ведущее, значит,

$$u_{H_15}^{(3)} = \frac{1}{u_{5H_1}^{(3)}} = \frac{1}{1 - u_{53}^{(H_1)}},$$
(2.36)

где $u_{53}^{H_1}$ — передаточное отношение обращенного механизма при неподвижном водиле H_1 . Оно определяется как передаточное отношение рядовой передачи:

$$u_{53}^{(H_1)} = u_{54'}^{(H_1)} \cdot u_{43}^{(H_1)} = \left(-\frac{z_{4'}}{z_5}\right) \cdot \left(-\frac{z_3}{z_4}\right) = \frac{z_{4'} \cdot z_3}{z_5 \cdot z_4} = \frac{15 \cdot 24}{25 \cdot 16} = 0.9.$$
 (2.37)

Подставляя выражение (2.37) в зависимость (2.36), получаем

$$u_{H_15}^{(3)} = \frac{1}{1 - 0.9} = 10. {(2.38)}$$

Во второй планетарной передаче водило ведомое, значит,

$$u_{5'H_2}^{(7)} = 1 - u_{5'7}^{(H_2)}, 2.39)$$

где $u_{5'7}^{(H_2)}$ — передаточное отношение обращенного механизма при мысленно остановленном водиле H_2 . Оно определяется следующим образом:

$$u_{5'7}^{(H_2)} = u_{5'6}^{(H_2)} \cdot u_{67}^{(H_2)} = \left(-\frac{z_6}{z_{5'}}\right) \cdot \frac{z_7}{z_6} = -\frac{z_7}{z_{5'}} = -\frac{75}{15} = -5.$$
 (2.40)

Подставляем (2.40) в выражение (2.39):

$$u_{5'H_2}^{(7)} = 1 - (-5) = 6.$$
 (2.41)

Определяем передаточное отношение всей зубчатой передачи, подставляя полученные значения (2.35), (2.38), (2.41) в зависимость (2.34):

$$u_{18} = -2 \cdot 10 \cdot 6 = -120.$$

Передаточное отношение получилось со знаком минус; это означает, что ведущее звено 1 и ведомое звено 8 (водило H_2) вращаются в противоположных направлениях.

1. Определим угловую скорость и угловое ускорение выходного звена. Как известно, угловые скорости и угловые ускорения ведущего и ведомого звеньев зубчатых передач связаны между собой зависимостью

$$u_{18} = \frac{\omega_1}{\omega_8} = \frac{\varepsilon_1}{\varepsilon_8} \,. \tag{2.42}$$

Из выражения (2.42) найдем ω_8 и ε_8 :

$$\omega_8 = \frac{\omega_1}{u_{18}} = \frac{150}{-120} = -1,25 \text{ c}^{-1};$$

$$\varepsilon_8 = \frac{\varepsilon_1}{u_{18}} = \frac{30}{-120} = -0.25 \text{ c}^{-2}.$$

Знак минус означает, что угловая скорость и угловое ускорение ведомого звена противоположны по направлению таковым ведущего звена.

2. Определим время, в течение которого угловая скорость ведущего звена уменьшится до нуля (для ведомого звена это время будет такое же).

Так как вращение ведущего звена равнозамедленное (ϵ = const), то для определения угловой скорости воспользуемся зависимостью

$$\omega = \omega_0 - \varepsilon t = 0,$$

отсюда

$$t = \frac{\omega_0}{\varepsilon} = \frac{\omega_{10}}{\varepsilon_1} = \frac{150}{30} = 5 \text{ c}.$$

Определим число оборотов ведущего и ведомого звеньев за время t=2 с. Для этого вначале определим угловые перемещения для этих звеньев:

$$\phi_1 = \omega_{01}t - \frac{\varepsilon_1 t^2}{2} = 150 \cdot 5 - \frac{30 \cdot 5^2}{2} = 375 \text{ рад;}$$

$$\phi_8 = \omega_{08}t - \frac{\varepsilon_8 t^2}{2} = 1,25 \cdot 5 - \frac{0,25 \cdot 5^2}{2} = 3,13 \text{ рад,}$$

где ω_{01} и ω_{08} – начальные угловые скорости.

Так как $\varphi = 2\pi n$, то отсюда определим числа оборотов валов 1 и 8:

$$N_1 = \frac{\varphi_1}{2\pi} = \frac{375}{2 \cdot 3.14} = 59,7 \text{ of},$$

$$N_8 = \frac{\varphi_8}{2\pi} = \frac{3,13}{2 \cdot 3,14} = 0,5 \text{ of.}$$

3. Найдем общий коэффициент полезного действия:

$$\eta = \eta_{12} \cdot \eta_{n1} \cdot \eta_{n2} = 0.97 \cdot 0.5 \cdot 0.96 = 0.47.$$